N Autodesk 2003

December 2-5, 2003 ¢ MGM Grand Hotel Las Vegas

Going Beyond DCL

Joel Roderick

CP21-3 1 know what you're thinking: "Why learn ObjectDCL when there's VBA?" Are you tired of hand coding DCL? Are you
wondering if you should just leam VBA and forget all this DCL stuff? This class will introduce you to the basics of
ObjectDCL and it's abilities. We will discuss how ObjectDCL compares with DCL, VBA, and ARX, and why ObjectDCL
might be perfect for you. Come learn about a great tool that many can benefit from.

About the Speaker:

Joel is currently Project Designer and CAD Technologies Manager at Water Technology, Inc., an aquatic planning,
design, and engineering firm in Beaver Dam, Wisconsin. At Water Technology, Joel is responsible for the conceptual
design of aquatic recreation / competition facilities & waterparks, as well as all AutoCAD management and
customization. For the past 5 years, Joel has been developing Water Technology's proprietary AutoCAD plug-in,
Aquatic Desktop using Visual Lisp, VBA, and ObjectDCL.

jroderick@watertechnologyinc.com

Going Beyond DCL

The basics of event driven programming...

Definitions:

ObjectDCL (ODCL) — an arx application that enables the use of ObjectARX style forms with lisp applications
Form — Synonym for dialog box

Control — An item on a form (button, list box, combo boxes)

Event — Happens when the user interacts with a control (action_tile)

Method — A function to manipulate forms & controls

Modal form — A form that has focus until closed (most AutoCAD dialogs)

Modeless form — A form that allows action to be taken outside it's boundaries (Aerial View)

Dockable form — Similar to modeless with the added ability to be docked (Properties)

Config Tab — Adds a custom tab to the options command

ObjectDCL.arx and ObjectDCL2004.arx — Required to be loaded in AutoCAD. This file is freely distributable and royalty
free. This files is necessary to display and handle the forms designed with ObjectDCL

ObjectDCL.exe — The form editor

.0dc — ObjectDCL project files. These files contain your form designs.

.0ds — Secure ObjectDCL project file. This file is optional and is used as a secure format and cannot be opened in the
ODCL editor. Be sure you always keep your .odc files!

JIsp — AutolLisp / Visuallisp file

File Organization:
The ObjectDCL.arx, .Isp & .odc/.ods files should be located in a folder that is within AutoCAD's search path.

ObjectDCL Projects:

A single ObjectDCL project can contain many forms of many types. So if your application needs more than one form, you can
have one project file that contains all of your forms. Project files contain forms only, there is no lisp code saved within these

files.

@ Autodesk University 2003 2

The ObjectDCL Editor...
The basic components of the ODCL editor:

Form Editor — The main window where you design forms
Project Window — Where you organize your forms, lisp, and distribution files
Control Toolbox — Where you get the controls for your form
Properties Window — Controls the properties of an object
Z/Tab Order — Controls what happens when user hits TAB & also controls the display order of controls
Intelligent Help — Explore the different methods and properties of an object

Picture Folder — Stores images for use within a project
Property Wizard — Provides a convenient way of changing the properties of a control.
Font Toolbar — Provides a convenient way of changing the fonts of a control(s).

Going Beyond DCL

There is also a toolbar for frequently used commands, but for the purpose of this class, we will be using the menus.

File Edit Projects Tools Wiew Help

=]

O-EH BB o @

AT & F R R
& BB EE ax £ O
B el = 3w
3] S Gf e G LB G
i 7%

Control
Toolbox

o h

Z1Tab Order
Window

=l

B 7 U &

Ea Modal Forms

isual/autolisp File Mame

H:tautoDesk University 20033CP21-3.lsp
B 73] Distribution File Mame
.71 H\AutaDesk University 2003\CP21-3.0ds

Project Window

Froperties | Events |

frmCP21-3

[Mame] frmCP21-3
[Object Browser]

[art ame] CP21-3_fmCP21-3
AllowR esizing True
Height 255
MaxDialogHeight 1000

M axDialogtidth 1000
MinDialogHeight 50
MinDialoghidth 50

TitleB arl con <Mones
TitleBarT ext DeclFarml
idth 342

M axDialogHeight

Properties Window

(18) Autodesk University 2003

Going Beyond DCL

ObjectDCL Boot Camp...
Rather than try to explain many things at one time, I am going to go step by step through the process of creating an ObjectDCL

project and explain things along the way. There are too many controls, properties and methods to cover here. This class is
intended to help you understand the basic concepts behind ODCL. Here is an outline of the process:

Create a project

Add a form

Assodiate a lisp file

Add controls

Add the code behind the controls

First things first, lets create a project...

There are three basic components of an ODCL project.

e .odcfile

e .odsfile

e Isp/ .fas/ .vixfile
It is recommended that you keep all of these files in the same folder. Also, make sure that the folder you place these files in is
part of AutoCAD’s search path.

Save the file:
Start ObjectDCL and dlick File->Save and name the file.

Associate a .Isp and distribution file:
The next step in the process is to associate a lisp file and a distribution file to your ODCL project. To do this, we are going to

use the Project window. First you will need to create a lisp file to associate to the project. You can do this with your favorite lisp
editor or just plain notepad.

project_____ d| Assodatealspfile:
= L VisualjAutoLisp Fils Name Double dlick on <None> under Visual/AutoLisp File Name and browse
B <ore> to your program.
(=)-423] Distribution File Mame
=) <None> Associate a distribution file:
Distribution files are a form of security. A distribution file has an .ods
[% extension and cannot be opened in the ODCL editor. This prevents
other from opening your ODCL project in the ODCL editor and
modifying the forms. Double dlick on <None> under Distribution File
Name, browse to your folder, and name the file.

Let the Fun Begin — Desighing Forms...
There are 5 types of forms supported by ObjectDCL. All 5 types work basically the same with some caveats. Modeless,

dockable forms and config tabs are handled slightly different than modal forms. For example, modeless and dockable forms
stay open, so you will need to account for when a user opens a drawing, or switches drawings.

Modal form — A form that has focus until closed (most AutoCAD dialogs)

Modeless form — A form that allows action to be taken outside it's boundaries (Aerial View)
Dockable form — Similar to modeless with the added ability to be docked (Properties)
Config Tab — Adds a custom tab to the options command

File Dialog — A customizable file browser

@ Autodesk University 2003 4

Going Beyond DCL

Adding a form:
For the purpose of this dass, we will use a modeless form since these are the most common. First lets start by adding a form.
Click Projects ->Add Modal Form.

|
Properties | Eurls |
frmCP21-3
[Mame)] frmCP21-3
[Object Browser)]
[%fark amne] CP21-3_hmCP21-3
AlloviR esizing True
Height 255
td axDiialogHeight 1000
b axDhialoghwidth 1000
tinDialogH eight a0
tinDialogiwidth 50
TitleBarlcon <Mohes:
TitleBarT ext DelFarmii
aidth 342

MaxDialogHeight

%

Do you wizh to update the [Varkame) global variables?
[¥ Update the Form's [YarM ame]
[~ Update the all the child controls' (a anme)

It the [varMame] is alieady in uzed by vour AutoLisp code,
you will hawve bo update pou Autolizp code.

& [x]

@ Autodesk University 2003

Properties

Now that you have added the form, we need to adjust the properties
of the form. To do this we will use the Properties Window. The
Properties Window works very similar to the one in VB(A). If you click
on a property, a description of what the property does is displayed at
the bottom of the Properties window. Most of the properties, for the
most part, are self-explanatory.

The VarName property

One property that is special to ODCL is the VarName property.
VarName is a global variable that is created when the form is shown in
AutoCAD. This variable gives you direct access to whatever object it
points to. In this instance VarName points to the form itself. The
VarName variable will allow you to make changes to the form from
lisp, so you can change the size of the form, disable the form, change
the color, etc. all from lisp. The global variables that are created when
showing a form are released when the form is closed, so there are no
memory issues.

Updating the VarName property

ODCL will name the VarName property based on the ODCL project
name and the form name. For example, if your project name is
“MyODCL" and the form name is “frmMyODCL" then ODCL will set
VarName as “MyODCL_frmMyODCL". ODCL has made it easy to
keep your VarNames organized by automating the task of updating
the VarName property. Any time you change the name of your form,
you will be given the choice of letting ODCL update the VarName
property. We will cover more on VarNames later.

Getting from ODCL to AutoCAD...
In this section, we will cover the code required to ensure that ObjectDCL.arx is loaded, load the project and then show the

form. Open the lisp file that you associated to your ODCL project in your favorite lisp editor. For the purposes of this class, we
will use the Visual Lisp IDE that comes with AutoCAD.

Loading ObjectDCL2004.arx
The code to load ObjectDCL2004.arx is simple. Make sure that this code is added to the lisp file and make sure it is run before

you try to show the form. Here is an example:

(defun LoadODCL ()

)
)|

Loading the ODCL Project

;;Function to load objectdcl2?@84.arx

(if (not (member "ObjectDCLZ884.arx" {(arx}})
(arxload "0ObjectDCL2884.arx" "0bjectDCL2884.arx not found.

i mahm e . #.’m,’_\ f_-\"\ o / S NPV

o ¢
\
o

Going Beyond DCL

To get the code required to actually show the form, we need to go back to the ODCL editor. We are going to use the
Intelligent Help and let ODCL do most of the work.

i
Methods Definition
=¥} Modal Fom Mlethod LoadProject 0K I

----- & AllowResizing
----- 2P CancelClose
..... =% Center

----- =@ Close

----- = Closeal

----- =% Enable

----- =% GetControldrea
----- = GetHwnd

----- =% GetRectangle
----- = GetTileBarText
----- E&! Height

----- 27 Initialize

----- = |shctive

----- = |sEnabled

----- =% |zFloating

----- E& MaxDialoghwidth

----- g5 MinDialogHeight

----- E&! MinDialogh/idth

----- =% Flesize

----- =% SetDialoghinkd anSizes
----- = SetTitleBarText

----- =@ Show

----- g5 TitleBarlcon

----- E&! TitleBarText

----- =% Updatetard ames
""" E& \Width

This method loads the requested project into memory for
later use. If you specifiy a T after the file name the odce file

will be reloaded. If wou are loading the ods distribution file,

the file will not be reloaded.

AutoLisp Syntax:

(Cdel_LoadProject Filellame fas Mfeger] [Opfional]

Feload fas TH

Copy To Clipboard

Intelligent Help

To access the Intelligent
Help, right dlick on the form
and dlick Intelligent Help.
The Intelligent Help will list all
the methods, properties and
events that the form
supports. As you highlight
the different methods and
properties, the appropriate
code is generated with
additional information about
that property or method.
There are too many
properties and methods to
cover them all here. The
Intelligent Help does a fairly
good job of explaining what
each method and property
does. It's really not
important that you know all
the methods and properties
rather, it's important that you
understand the concept
behind the Intelligent Help.

Going Beyond DCL

-} Modal Form Iethod LoadProject
----- B AllowResizing LoadProject Method
----- 2F CancelClose This method loads the requested project into memory for . .
By Cepter later use. If you specifyy a T after the file name the ode file ThIS methOd is used to load the ODCL
..... 27 Close will be reloaded. If you are loading the ods distribution file, project into memory. You will need to
=% Close the file will not be reloaded. run this method before any others.
% Closedl ;
R AuioLisp Syntax: Rather th_an having to type all the
oty GelControlires (QOdcl LoadProject FileMame [as hifeger [[Optional] code, Ob]eCtDCL has pI'OVIded a

Reload [as T]) convenient button at the bottom of

the Intelligent Help to copy the code
to the dipboard so you can paste it

o FetHwnd
% GetRectangle
o GetTitleBarT ext

S e into the Visual Lisp IDE. Highlight the
oy Ishctive LoadProject method and dick “Copy to
% [sEnabled C|ipb0ard"

% |zFloating

e et L e e e

Pasting the code

Now that you have the code saved in your clipboard, go back to the Visual Lisp IDE and paste the code. You will notice that
there are some optional arguments. Since they are optional, we can delete that portion, or we can supply the arguments. The
arguments are explained in the Intelligent Help (see above). If ObjectDCL2004.arx is loaded, the ODCL functions are
recognized by Visual Lisp and are blue.

;;load the project {
{0dcl_LoadProject FileHame [as Integer] [Optional] Reload [as T]) 1

preesy e S . + s
\""'ﬁ.__,.'"'_._.r e e N 7 .L\, Y . /

Reload flag

Since we are in the process of designing the form, we want to use the “Reload” flag so the project is reloaded each time the
command is run. Otherwise, the one that is stored in memory will be used. Once you have finished your application, the
“Reload"” flag can be removed, so that ODCL will use the project stored in memory instead of reloading the project each time
the command is run.

;;load the project
(0dcl_LoadProject "CP21-3.odc™ T) }

P f

@ Autodesk University 2003 7

Going Beyond DCL

Showing the Form
Now that the code to load the project is complete, we will use the “Show” method to get the form to show up in AutoCAD. Go
back to the Object Brower and highlight the “Show” method, then dick “Copy to Clipboard”.

Paste the code
Switch over to the Visual Lisp IDE and paste the code.

::Show the form /
(0dcl_Form_Show CP21-3_frmCP21-3 [Optional] UpperLeftXCoordinate [as Integer] [Optional] UpperLeftYCoordinate [as Integer])

e el e e e

Unless you want to show your form at a specific location on the screen, you can delete the optional arguments:

VarName
| ODCL automatically used the variable stored in the VarName
Eaﬁ'éﬁfpﬁ'ﬁﬁ_ﬁﬁﬁﬂ CP21-3_frnCP21-3) / property of the form as the argument.
llowR esizing 1
Ei-g!lt. S Jw--nr“zzﬁ\ T e {‘rl..

Ly « T -, e, s

Making a command:
We now have all the code to show the form. Now we need put it all together into a command.

{defun c:CP21-3 () o “De-fun” part
- -1oad Obiectbel / Putting it all together into a command is really no different
(Lo adl]D[:Lg ~ .. thanany other lisp program. In this case, the command name
a is"CP21-3". Now all that needs to be done is load the lisp file
;;load the project
{0dcl LoadProject "CP21-3_.odc" T} 1!.',:. and type the command.
;:5how the form /
{0dcl_Form_3Show CP21-3_frmCP21-3) -"__
p
) r
s - \."\ - P ,“ S fﬂ - Hfh-' h/
T — =z# The Form in AutoCAD
[anassnlersalrom—RoRE Rl S as e oA 2 You can now run the “CP21-3" command in AutoCAD to
e | testthe form. Now that we have them form ready, we

can start adding controls. To dose the form, dlick on the
Xin the upper right corner of the form.

=
~
&
N
A
I
=
ul
<
=
A
L
H
-

Getting Things Under Control...

Going Beyond DCL

To add controls to the form, we are going to use the Control Toolbox. ODCL comes with many standard controls, but also has
the ability to use most ActiveX controls. There are too many controls to cover here, however we will be using the Intelligent

Help, and they are all explained there.

TextButton Control

X T af B]
« Ef B sv &
B [o
3 5 B e
b 2

— =

;b W
[
Ul
8 3

Buttons

1910

TextButtan

TextButton

[AutoDesk University - CP21-3 x|

ObjectDCL

Do vou wish to update the {varkame) global wariable?

Yes Mo |

]

If the (VarMame) is already in used in Autolisp you will have ko update wou .lsp file.

Ok Cancel r

i bk g

Ty
EottomFromE ottom 18
0K
False

DragnDropdliowd egin
DragnDropdllowDrop True

Enahled True
= ‘? ™ e 1 #e\qgf\o_gf' . \, b

@ Autodesk University 2003

o

Let's start off with the two things most forms need, OK and Cancel buttons. For
these buttons we will use the TextButton control. Adding controls is as easy as
dicking on the control and specifying the location on the form.

Name Property

Add two TextButton Controls to the form. After adding the
buttons we will need to edit the properties of each button.
Highlight the left button and change the “Name” property to
txtOK. Repeat the same for the right button, naming it txtCancel

Control VarName Property

Since all controls have a VarName property, ODCL will
give you the choice to update the VarName property
after changing the Name property. The VarName
property of a control gives you direct access to the
individual controls on a form.

Lt K,

[Object Browser)

art ame] CP21-3_fimCP21-3 a0k,
[wizard) L
BattornFramB attam 24
il T
Caption Property

Next, we will change the Caption property of the TextButton
Control. The Caption property contains the actual text that is on
the control. Change the Caption property to “"OK". Repeat the
same for the right button naming it “Cancel”

Making the controls alive...

Going Beyond DCL

Now that we have our buttons ready, we can add the code to actually make them do something. To accomplish this, we are
going to use events. The DCL equivalent of an event would be the (action_tile) function. ODCL has many more events to
choose from, and each control and form has it's own set of events.

Properties Ewents |

OnChcked

[10nDragnDropBeqgin

[10nDragnDropFromCaontral
[10nDragnDropFromOther
[1000ragnlropT odutaCal
1 0nMouzetd ove

|c: frmiCP21-3_tmt0F,_OnClicked

[defun c:frmCP21-3_tat0F,_OnClicked [] -
[Odc|_teszageBox "To Do: code must be added to k0K "To do') LI

Indicates that the uzer haz clicked the left mouse buttan on the contral. ;I

[

Copy To Clipboard |

Adding Events
To add events, we will use the Properties Window in the lower

right corner of the editor. Highlight the OK button, and then
dlick the Events tab in the Properties Window. As you can see,
there are many events for a TextButton control. The
description and code for each event is shown at the bottom of
the Intelligent Help. Again, ODCL has provided a convenient
“Copy to Clipboard” button at the bottom to save the code to
the clipboard.

Where to paste the code

Since each control will have it's own function, it's easy to have
many functions within you program. Since these functions are
only used when the command in running, we can put the
control functions within the main defun and localize the control
functions. For modeless and Dockable forms, the event
functions need to be available at all times, so these functions
should go outside the main defun.

;;onclick event for the 0K button
{defun c:frmCP21-3_ t=tO0K_OnClicked ()}

)

JEra— ,.n.-&-'“-.“__ F i P,

{0dcl_HMessageBox “To Do: code must be added to txtOK™ "To do™) ¢f
4

N, ‘—-_..‘_I"‘ —~4' . ’“f‘ o ,_,_J'\..a e

Adding the OnClicked Event

The event we are going to use is
OnClicked. This event is fired when
the user dlicks the control with the left
/ mouse button. Check the box next to
OnClicked and then click “Copy to

Clipboard”. Switch over to the Visual Lisp IDE and paste the code. ODCL puts in “"dummy code” for each event that consists of
an alert box telling you to add code. We will leave the code as-is for now and come back to it later.

{defun c:CP21-3 ()

;;load ObjectDCL
{LoadODCL)

;;onclick event for the OK button
(defun c:frmCP21-3 txtOK_OnClicked {}

)

;;onclick event for the Cancel button
(defun c:frmCP21-3_txtCancel_0OnClicked (}

)

;;load the project
(0dcl_LoadProject "CP21-3.odc™ T)

;:Show the form
(0dcl_Form_Show CP21-3_frmCP21-3)

)

’*‘ e,

--'-"\...\.-\\“, e e e I e N o ,"‘-.“___

(0dcl_MessageBox "To Do: code must be added to txtoK™ "To do™)

(0dcl_MessageBox "To Do: code must be added to txtCancel™ "To do™)

Next, repeat the process for the
cancel button, and paste the
code into the Visual Lisp IDE.
Your code should look like
example to the left. You can
now load the lisp program, and
run the command. Be sure to
save the ODCL project
before running the
command, otherwise, the
changes will have no effect.
Now that you have added code
to the controls, clicking them will
trigger the event functions.

LWL W R W e

10

Going Beyond DCL

Resizing forms...
ODCL forms can be resized making them much more functional than DCL dialogs. Making your form resizable is easy, however
there are some caveats when it comes to making your controls stay in the right place when you resize the form.

AllowResizing Property

. + Highlight the form and change the AllowResizing property to True. If
298 '3 you save the ODCL project and run the command, you will be able to
1000 aeae, aend resize your form, but the controls don't really work the way we want.

CP21-3_fmCP21-2

Property Wizard

To control the way controls react when resizing the form, we
are going to use the Property Wizard. To access the Property
Wizard, double dlick on the desired control. We want the OK
and Cancel buttons to stay in the lower right hand comer of the
form when resizing. Change all 4 options on the Geometry tab
to ensure that the buttons stays anchored to the lower right
comer.

Left Side Alignment:
| Difset From Right Edge _~ |

Top Side Alignmert:
|foset From Bottom Edge j

Right Side Alignment:
|foset From Right Edge j

Battam Side Alignment:
Offset From Bottam

Ok | Cancel Help

Kicking it up a notch with images...
A common question that gets asked is "How can I show my company logo on the form”. While this is possible with DCL using a

slide and image_show, it is pretty limiting. ODCL provides a way to add images to forms and controls easily. In this section, we
will discuss the Picture Folder in ODCL.

el e k) o The Picture Folder

add Modeless Farm ODCL uses the Picture Folder to store images that will be used within the ODCL project. The
#idd Dockable Form nice thing about the picture folder is that you don't have to keep the actual image with the

Add Config Tab project. Once you add your image to the Picture Folder, the image is saved within the ODCL
e project. To access the Picture Folder, dlick Projects -> View/Edit Picture Folder.

‘Wiena/Edit Pickure Folder

Set AutolISP File Hame Please note: 3" Day Software recommends that large jpeg files should not be loaded directly
TG DI into the picture folder. The jpegs will take up a large amount of memory when the project file is
Remave Form loaded into AutoCAD. Instead use the PictureBox’s function called LoadPictureFile instead at run

time and this will minimize the amount of memory being used since the loaded picture is
released from memory as soon as the dialog box is closed.

@ Autodesk University 2003 11

Going Beyond DCL

Picture Folder

Add

|x

Adding Images to the Picture Folder
Adding an image is quite easy. Now that you
have the Picture Folder open, dlick Add and
e select an image file. You can add as many
Delete images you want. ODCL will assign each

0 image a number. You can now reference the
images according to this number.

Hll

Cahicel

Adding the image to a control

ue T [F

&
2
k.

[E] AutoDesk University - CP21-3 x|

@ Autodesk University 2003

. Toadd the image to the form, we are going to use the PictureBox Control. This control allows you to add
4" most image types to any form. It also has many events and methods you can use to add some nice

1 features to your program, like adding a hyperlink to an image. On the Control Toolbox, dlick the PictureBox
Control, and then specify the location of the control on the form. After adding the control, change the Name
property to “picLogo” and answer yes to update the VarName property. Then, you can specify which image
you want shown on the control. To do this, we will use the Picture property.

Picture Property

Make sure the PictureBox control is highlighted and change the
Picture property to the number associated with the image you
want. In this case the image number is 100.

,.-

Left 12 J
LeftFromBight A

100 r
RightFromBight J

241
ToolTipT ext /
.- w‘_’,_...\“f-w,\ﬂ e L,_.A_\”N“

Lk ST S

12

oDesk University - CP21-3

[E] Aut

Going Beyond DCL

x| AutoSize Property
------------- - To make the control shrink to fit tightly around the image, you

. can use the AutoSize property. Make sure the PictureBox control
is highlighted and change the AutoSize property to true.

Left Side Alignment;
|foset From Left Edge j

Top Side Alignment:

Right Side Ahgniment;
|foset From Left Edge j

Bottom Side Alignment:
|foset From Top Edge j

Making something useful....

(v ark ame)
AllowR esizing True
Height

23535005 t awDialogHeight 1000
Diniiil o [.\v_‘\‘ Cane I,mnq\ ,“,\"“-_J“x.

CF21-3 imCP21-3 ;

228

Reminder!

Don't forget to use the Property Wizard to control what
happens to the PictureBox control when the form is resized.
Also, be sure you save the ODCL project before you run the
command in AutoCAD.

To finish this example off and make something useful out of what we have done so far, let's add a ComboBox control that will

list all the blocks within the drawing.

(]9

(18) Autodesk University 2003

ComboBox Control

[E]autoDesk University - CP21-3 A combo box control is used for listing items. On the

: : ControlToolbox, click the ComboBox control and specify the
location on the form. Change the Name property of the
ComboBox control to “cmbBlocks”, and answer yes to update the
VarName property.

DR

13

Going Beyond DCL

x| ComboBox Styles
ODCL has many different styles of ComboBoxes. You
Geometry ComboBox Styles | Fort | .
o can change the style of the ComboBox by using the
'ﬁ?mm Box Styles: ——— 7 - Combo Box Deseriptior ———— Property Wizard. Double click on the control to see the
0 - Cornba =) Thiz zetting indicates that the) . L
1 - Simple combo box wil be displayed as different options and a description of what they do. For
a drop down box that iz read H i \\! ”
2 - Dirop Down only and naot editable by the this example, we will use the "Drop Down” style.
3 - Arow Head i .
€ 4-Color Reminder!
5 - Linsweight Fread Only =] Don't forget to use the Property Wizard to control what
- happens to the ComboBox control when the form is

B - Plot Style Mames
7 - Plot Style Tables
8- Font Drop List

P =i
ok I Cancel | Apply Help

resized.

Filling the ComboBox
We want the ComboBox to contain a list of all the blocks within a drawing. To do this, we are going to use the Onlnitialize

event of the form to populate the ComboBox as the form is shown.

OnlInitialize Event

Hightlight the form and switch over to the Events tab on the
Properties Window. Check the Onlnitialize event and dlick
“Copy to Clipboard”, then paste the code into the Visual Lisp
M Orinitislize IDE.

[]0nSize

Properties Ewents |

[]0nCancelClose
[10nCloze

|c:fmCP21-3_Onritialize

[defun exfrnCP21-3_Onlnitialize [) ;l
[Odcl MessageBox "To Do: code must be added to frmCP21-3" "Ta LI

Indicates the farm is being initialized and about ta be shown, ;I
Copy To Clipboard |
;;oninitialize event function v .f
{defun c:frmCP21-3 OnInitialize () jat
{0dcl_HMessageBox “To Do: code must be added to frmCP21-3" "To do™) (

)

B N . N panan,
“-“_,’q_"'-. N .4—",-‘...‘ Iy » P A R ,—-'\,-— e _,/

@Autodesk University 2003 14

Going Beyond DCL

x| AddList Method
To fill the ComboBox, we will

oK need to use the AddList
u method of the ComboBox.

i ethodz Drefinition

=-[#} ComboBox * | [lethod AddList
----- =% AddColar
...... ddList This method will add a list of strings to the specified This method takes a list and

AddPath ComboBox populates the ComboBox.
AddSting .
----- B! BattomFromBatiam AutoLisp Symtax:)

_____ & Clear (Ol:_icl_(?omanox_Addhst CP21-3_frmCP21-3 cmbBElocks
Cleart di Pteinglist [as List of Strings]) Using the Intelligent Help

----- =B DeleteString highlight the AddList method

o SL,:DDWH of the ComboBox and dlick

..... EE DropDownHeight L “Copy to CIipboard”, then
..... 22 EditChanged paste the code into the Visual

..... & Enabled Lisp IDE in the Onlnitialize
----- E& Eventlnvoke t function
----- @ FindColor event fncon.
FindLine'w'eight
----- =% FindString

----- = FindStringE nact

..... -

----- E&! FontBold

----- E&! Fontltalic

----- E&! FontSize

----- E&! FontSizeStyle

----- E& FontStrikeOut

----- E&! FontUnderling

----- =% ForcellpdateM ow
----- = GetCount :
_____ =& GetCuPos j Copy To Clipboard

A

Since we want to list all of the blocks within a drawing, we will need a function to generate that list. Here is an example:

;sfunction to list all the blocks within the drawing 4
(defun GetBlockList (/ BlockList) X
(vlax-for item {vla-get-blocks {vla-get-activedocument (vlax-get-acad-object}}) "
(if (and (not (wcmatch (vla-get-name item} "=Paper ="}} !
(not (wcmatch {vla-get-name item) "xModel_x"}) 1
}
(setq BlockList {cons {vla-get-name item) BlockList)) {
) .
j ¢
) 4

g, . s -

P We are going to run this
‘4 method when the form is
shown, by using the
+ Onlnitialize event of the form.
}" Your OnlInitialize event
N I N R T function should look like the
) example code to the left.

;;oninitialize event function
(defun c:frmCP21-3_0OnInitialize ()

(0dcl ComboBox AddList CP21-3 _frmCP21-3_cmbBlocks (GetBlockList}))
}

@ Autodesk University 2003 15

Going Beyond DCL

Checkpoint!
By now we have covered quite a bit of information. At this point you should test the form and code to see if everything is
working as planned. Below is what your code should look like. Be sure to save your ODCL file before running the command!

;;Function to load objectdcl2?B84.arx
(defun LoadODCL ()
(if (not (member "ObjectDCLZO04. arx" (arx)))
(arxload "0ObjectDCL2884.arx" "0bjectDCL2884.arx not found.™)
}
)

(defun c:CP21-3 ()

;;load ObjectDCL
{LoadODCL)

;;Function to 1list all the blocks within the drawing
(defun GetBlockList (7 BlockList)
{(vlax-for item (vla-get-blocks (vla-get-activedocument (vlax-get-acad-object}}}
(if (and {not {wcmatch {vla-get-name item) "=Paper_="))
(not (wcmatch (vla-get-name item) "'#Hodel #"}}
)
(setq BlockList (cons (vla-get-name item) BlockList))
)
}
)

;;oninitialize event Function
(defun c:frmCP21-3 OnInitialize ()

(0dcl_ComboBox_AddList CP21-3_frmCP21-3_cmbBlocks (GetBlockList))
}

;;onclick event for the OK button
(defun c:frmCP21-3_txt0K_OnClicked ()

(0dcl_MessageBox "To Do: code must be added to txtoOK™ ""To do™)
)

;;onclick event fFor the Cancel button
(defun c:frmCP21-3 txtCancel OnClicked ()

(0dcl_MessageBox "To Do: code must be added to txtCancel™ "To do™)
}

;;load the project
(0dcl_LoadProject "CP21-3.odc™ T)

;:Show the form
(0dcl_Form_Show CP21-3_frmCP21-3)

Finishing Touches... x|
To wrap things up, we will add a BlockView control to the form, so we can [3dBiat |

preview the blocks. A BlockView control will also allow a user to pan, zoom,
and orbit within the control. Then we will complete the OK and Cancel
button code. Below is what the final command will look like along with the
completed code.

Hopefully you now have an understanding of the concepts behind ODCL
and can take what you have learned here and apply the same concepts to
the other types of forms and controls.

@ Autodesk University 2003

ak. | Cancel |
A

Going Beyond DCL

;s;main function

;snotice that we can localize the event functions

{defun c:CP21-3 (/
GetBlockList
BlockHame
c:frmCP21-3_cmbBlocks_0On3elChanged
c:frmCP21-3_0OnInitialize
c:frmCP21-3_ t=tOK_OnClicked
c:frmCP21-3_txtCancel OnClicked

)
;:load ObjectDCL
(LoadODCL)

;;function to 1list all the blocks within the drawing
{defun GetBlockList (7 BlockList)
{ulax-for item {vla-get-blocks {vla-get-activedocument {vlax-get-acad-object})}}
{if (and {not {wcmatch {(vla-get-name item) "=*=Paper_=")}
{not {wcmatch {vla-get-name item} "'=Model ="}}

)
{setq BlockList {cons {vla-get-name item} BlockList})
)
)
)

;sonselchanged event function

{defun c:frmCP21-3 cmbBlocks OnSelChanged {nSelection sSelText /)
;snotice that we can use the arguments to get the text of the selected item
{setq BlockMHame s3elText)
{0dcl_BlockVUiew DisplayBlock CP21-3_frmCP21-3_blkPreview BlockMame)

)

;:oninitialize event function
{defun c:frmCP21-3_0OnInitialize (}

{0dcl ComboBox AddList CP21-3 frmCP21-3 cmbBlocks {GetBlockList}))
)

;;onclick event for the 0K button
{defun c:frmCP21-3_ t=tOK _OnClicked {}
{0dcl_Form_Close CP21-3_frmCP21-3)
{command " _insert" BlockMame pause pause pause}
)

;;onclick event for the Cancel button

{defun c:frmCP21-3_t=tCancel OnClicked {}
{0dcl_Form_Close CP21-3_frmCP21-3)

}

;;load the project
{0dcl_LoadProject “CP21-3.o0dc™ T)

s s3how the form
{0dcl_Form_Show CP21-3_frmCP21-3)

@ Autodesk University 2003 17

Going Beyond DCL

Advanced Topics:

Making your program MDI aware

The ODCL help file explains the technique fairly well. Here is a snippet from the help file:

“To make the dockable and modeless forms MDI aware requires that your code updates the dialog box after every time a
different drawing receives focus. The event “OnDocumentActivated” has been added to Dockable and Modeless forms so that
you may receive notification from the dialog box that it needs to be updated. Your program is responsible to update what the
dialog box displays to the user. Note that the event is not fired when a new drawing is created or a drawing file is opened. With
these two cases your lisp code that is auto-loaded should handle the initialization of the dialog box.”

ActiveX Controls = Y N
ODCL supports the use of most ActiveX controls. You can access “non-ODCL" controls Bl = 4du G_J "
by dlicking the “Insert ActiveX Control” button on the Control Toolbox. Onceyou have |81 S1d G mwe 55 51 G2 %
an ActiveX control on your form, you can use the same concepts outlined above to wE 4
manipulate them. If you use an ActiveX control that is not installed on a machine that L3 *"‘
will be running your program, you will need to register the control on that machine. Insert Ackivel Control

ODCL also has a function called (Odd_RegisterActiveXCirl) that makes this task easier. | .a.. " B y /

Drag and Drop
ODCL supports drag and drop functionallity. The user can drag from a control or AutoCAD to another control or to AutoCAD.
Each control that supports drag and drop has four events to support this feature.

¢ DragnDropBegin - Indicates the user has just begun a drag and drop selection from this control.

¢ DragnDropToAutoCAD - Indicates the user has just dragged and dropped on to the AutoCAD Drawing from this
control.

¢ DragnDropFromControl - Indicates the user has just dragged and dropped from another control to this control.

¢ DragnDropFromAutoCAD - Indicates the user has just dragged and dropped a selection from the AutoCAD Drawing to
this control.

EventInvoke Property

If you intend to use the (command) function in your program, you will need to make sure that the EventInvoke property is set
to 1. A setting of 1 will force ODCL to give focus to the command line allowing the (command) function to be used. A setting
of 0 will keep the focus on the control.

@ Autodesk University 2003 18

